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1.  INTRODUCTION 

Currently, the most widely accepted design for kinetic energy, 
anti-tank applications is the sabot, fin stabilized projectile.  In 
order to be a viable candidate for the ground warfare role, a weapon 
system must be capable of achieving a high degree of precision.  One 
contributing factor to precision is round-to-round dispersion. 

For spin stabilized projectiles, the most significant sources of 
dispersion originate either with gun induced mechanical interactions 
such as balloting, pointing error, throw off, tip off, etc., or with 
projectile inertial or aerodynamic asymmetries. However, with fin 
stabilized designs, additional* sources of launch perturbation may 
develop. Figure 1. At ejection from the gun tube, the fins are exposed 
to the high velocity muzzle exhaust.  With the fins in reverse flow, 
the projectile is statically unstable; yet, analysis of this region1, 
shows that the short residence period precludes the build up of 
significant transverse velocities. 

As the projectile penetrates the muzzle blast, the sabot components 
begin to move away from the flight body.  During this process, the fins 
are in the wake of the sabot segments.  This aerodynamic shadowing can 
decrease or even eliminate fin effectiveness resulting in static 
instability of the projectile. 

At separation from the gun tube the sabot components and projectile 
are in direct mechanical contact.  Elastic decompression, spin, and 
aerodynamic loadings act to lift the sabot away from the projectile; 
however, mechanical interaction may persist if the components pivot 
about a point of contact with the body. Alternatively, the sabot 
components may initially break contact only to reimpinge on the pro- 
jectile at a later stage in the discard.  Asymmetries in the contact 
process can produce direct momentum transfer between the sabot segments 
and the projectile.  Additionally, asymmetric momentum transfer, e.g., 
contact between the projectile and only one of the sabot components, 
can give rise to asymmetry in the sabot discard trajectories with 
respect to the flight body. 

Geometric asymmetry in discard trajectories results in aerodynamic 
asymmetry in the mutually interacting flow field associated with the 
sabot components and the projectile.  This is the final type of launch 

E.  M.   Schmidt,  K.   S.  Pansier,  and D.  D.  Shear,   "Trajeatory 
Perturbations of Fin-Stabilized Projectiles due to Muzzle Blast," 
AIAA J.  Spacecraft and Rockets,   Vol.   14,  No.   6,  June 1977, 
pp 339-344. 



disturbance considered. Hxperimental and analytical studies ' ' have 
shown that interference loadings due to aerodynamic asymmetries may be 

significant. 

The present paper will examine each of these possible sources of 
post ejection interaction: muzzle blast, fin shadowing, mechanical 
reimpingement, and aerodynamic interference.  As a source of data, the 
near muzzle motion of a medium caliber, anti-tank projectile will be 
studied. 

II.  EXPERIMENTAL APPARATUS AND TEST PROCEDURE 

The test projectile. Figure 2a, is the 60mm Anti-Armor Automatic 
Cannon (AAAC) candidate developed by BRL.  The flight body has a 
diameter, I,   of 23mm, a length of 423mm, and a fin span of 56nim.  A 
four segment sabot is employed to launch the round from a 60mm tube 
which is rifled with one turn in 200 calibers of projectile travel.  The 
launch velocity is 1310 m/s (M = 3.91), and the initial roll rate based 
on muzzle twist and velocity is 110 rev/s. 

Tests were conducted at the BRL Transonic Range using the set-up 
shown in Figure 2b.  The combination of orthogonal X-ray stations near 
the muzzle and orthogonal spark shadowgraph stations within the range 
provide an excellent means of describing both the initial perturbations 
and the subsequent response2.  The six X-ray stations are located at 
1.7m intervals over the first 9.0m of the trajectory.  These provide 
photographs of the sabot component and projectile motion during the 
period wherein strong interactions are occurring.  Five smear cameras 
set at 4.6m intervals after the final X-ray station measure the late 
stages of sabot discard.  At 35m from the muzzle, the round enters 
the Transonic Range where its yawing motion is measured at 25 spark 
shadowgraph stations extending from 40m to 200m forward of the muzzle. 
This data provides information both on the launch disturbances and on 
the projectile aerodynamic characteristics.  The latter are: 

2. E. M. Schmidt and D. D. Shear, "Aevodynamia Intevfevenoe during 
Sabot Bisaard," AIAA J. Spaaearaft and Rockets, Vol. IS, No. 3, 
May-June 1978,  pp 162-167. 

3. H.   Conn,   "The Influence of Sabot Separation on the Yawing Motion of 
a Cone," Defense Research Establishment,  Valcartier Canada, 
TN 1849/70,   June  1970.     AD 880697L. 

4. VI.   B.   Glauz,   "Estimation of Forces on a Fleahette Resulting from a 
Shock Wave," Midwest Research Institute,  Kansas City,  MO, 
R3451-E,  May 1971.     AD  724178. 
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The details of the data reduction procedure and the use of the 
X-ray and Transonic Range data to define the magnitude of the sabot 
discard interactions relative to inbore disturbances are described 
in Reference 2.  In the present report, only the X-ray photographs 
will be used to examine the sabot discard and resultant interactions. 
The smear camera photographs show that after 11.0m of travel, the 
sabot components are sufficiently separated from the flight body to 
preclude any further interaction. Thus, the X-ray results, extending 
over the first 9.0m of the trajectory, should provide adequate 
representation of the sabot discard perturbations. 

III.  EXPERIMENTAL DETERMINATION OF SABOT DISCARD 

Ten rounds were fired in the test program. Of these, eight 
complete sets of X-ray photographs were obtained.  For the purposes 
of this paper, only one of these eight rounds will be addressed m 
detail. The orthogonal X-rays for the sample round are shown m 
Figure 3. At the first station, the only observable motion is the 
shedding of the plastic centering and obturating bands and a slight 
lateral motion of the sabot components.  Examination of the constructed 
rear view of the discard sequence. Figure 4, shows that this lateral 
motion is apparently due to the initial roll rate of the round.  In 
the second set of X-rays, no significant pitch of the sabot segments 
is apparent. This station is located at 2.3m from the muzzle while 
the projectile remains in the muzzle blast for the first 1.5m of 
flight  Thus by the second station, the round has not been exposed to 
free flight aerodynamic loads for sufficient time to notice their 

effect. 

By the third X-ray station, the aerodynamic loads on the front 
chamfer of the sabot have caused the sabot components to pitch away 
from the flight body.  Subsequent X-ray photographs show the con- 
tinuation of this pitching motion and resultant lifting away from 
the projectile due to the sabot angle of attack.  Since the sabot 
components assume a high drag attitude and have relatively low mass, 
they begin to decelerate and fall behind the projectile. 

An interesting feature of the discard is shown in the third 
X-ray photograph. At this station, an impact occurs between the pro- 
jectile and the sabot component designated as number 4 (Figure 4). 



The effect of this impact is demonstrated in the remaining X-ray 
photographs and their corresponding reconstructed rear views.  The 
lateral momentum transferred to the sabot component due to impact 
causes it to move more rapidly away from the projectile than do the 
other sabot components.  As such, an asymmetry in the discard pattern 
is generated which becomes more apparent with each successive X-ray 
(note the motion of component number 4 in the vertical views).  The 
resulting imbalance in aerodynamic loading due to this asymmetry in 
the flow geometry will be discussed in more detail in the following 
sections. 

From the X-ray photographs, the motion of each of the sabot 
components can be measured. Figure 5.  The variation in roll angle, 
(j), with time. Figure 5a, is quite interesting.  The two sabot 
components which are launched in a horizontal attitude, numbers 1 
and 3, show roll histories which are similar and have nearly constant 
rates; however, the remaining two components have roll histories 
which diverge in opposite senses.  Component number 4 suffers impact 
with the projectile and shows a roll stabilization as a result of the 
impact with the rolling projectile.  However, component number 2 
shows a diverging roll rate which is not presently explained.  The 
magnitude of the angle of yaw, |C|, Figure 5b, varies consistently 
for all of the components with the exception of number 4.  Again, 
the impact would be expected to create a pivot point about which the 
sabot component would be rotated by the aerodynamic loadings.  The 
effect of the higher yaw level of component number 4 is reflected in 
the displacement of its center of gravity. Figure 5c.  While all 
the components fall back relative to the projectile, component 
number 4 does so at a slightly faster rate.  The final figure in this 
sequence. Figure 5d, shows the lateral displacement of the sabot 
component centers of gravity relative to the assembled positions. 
In this figure, the resulting asymmetry due to impact is clearly 
indicated. 

In the remainder of this report, the launch disturbances to which 
this round is subject are analyzed and a relative ranking determined. 

IV.  ANALYSIS OF LAUNCH DISTURBANCES 

A.  Muzzle Blast 

The first of the possible sources of perturbation subsequent 
to shot ejection is the muzzle blast. Figure 1.  The magnitude of 
muzzle blast interaction may be estimated from the launch properties 
of the projectile measured by X-rays.  Figure 6 shows the variation 
in projectile angle of attack, a, and angle of sideslip, B, as the 
round moves through the X-ray field of view.  Each data point 
corresponds to a particular X-ray station.  From these data, the 
initial launch properties of the round are determined to be: 

10 



k I = 0.05° 1  0 ' 

li I = 1.28 rad/s 1 o ' 

Using the analysis of Schmidt and Fansler, Reference 1, the change in 
angular velocity due to the projectile passage through the muzzle 
blast may be computed from: 

|4|m#b# = (Y+l)p*(nA/2)(AD/lyVp) P \l-Q\ (1) 

where y    =  1.25 „   2 

p* = 1.38 x 10 N/m 

n = number of fins = 4 
-3  2 

A = area of single fin = 1.058 x 10  m 

A = c.p.-c.g. separation = 0.16m 

D = gun tube diameter = 0.06m 

1  = 0.0192 kg-m 
y 

V = launch velocity = 1310 m/s 
P 

P = momentum transfer function = 0.3 

Substituting these values into equation (1) results in 

|A||  .  = 6.73 x 10" rad/s  , 1  'm.b. 

or 

IA|I  . /|5 I = 5.25 x 10"2  , 1  'm.b. ' o' 

indicating that the influence of muzzle blast is negligible. 

B.  Fin Shadowing 

When the projectile penetrates the muzzle blast, it begins to 
experience flow from the forward direction; however, the sabot 
components are in close proximity to the round and tend to mask the 
fins in their wake.  As such, the projectile may be statically un- 
stable, and since the roll rate is low, the projectile is gyro- 
scopically unstable. To determine the importance of fin shadowing 
as a source of dispersion, a comparison will be made of the pro- 
jectile yawing motion under two conditions; 

(1) the fins are completely shadowed, 

(2) the fins are not shadowed, i.e., normal free flight. 

11 



The solution to the equations of motion for a projectile 
executing small amplitude oscillations have been developed by Murphy'. 
The yawing of a symmetric projectile may be described by the following 

relation: 

? = k/h + k/^ (2) 

where: k. = k. e j 
^    o 

A. = A.   + 6!s 
1    J    J J J 0       J 

id).       .        i4>.        (A.   +  i(t)'.)s fzi 
Therefore,   k.e ^j   = k^   e V

JO  e'  j y] ^J 
o 

and Murphy gives 

X.   +  i*!  =  (iP  +   [4M -  P2]1/2)/2 (4) 
J 3 3 

where: M =  pSJl CM /2I 
a 

P  =   (Ix/Iy)(p^/V) 

For the two conditions to be examined, the only differences in 
properties in the above expressions are in the values of the aero- 
dynamic moment coefficient.  For forward, free flight. 

f  = -21.5 [Case (2)] 
M 
a 

For the case of fin shadowing, it is assumed that only nose lift 

contributes to the overturning moment.  Thus, for a conical nose in 
hypersonic flight, C  =2.0 and the resulting overturning moment is 

a 

C  = +16.3.  [Case (1)] 
^M 

(X 

The remainder of the terms in Equation (4) are: 

5. C.  H.  Murphy,   "Free Flight Motion of Syrmetria Missiles, " 
BEL Report 1216,  Ballistia Researah Laboratory,  Aberdeen Proving 
Ground,  MD,  July 1963.    AD 442757. 

12 



3 
p = 1.21 kg/m" 

I =  0.02311m 

S = TT£
2
/4 = 4.19 x 10'4 m2 

1 /I  = 0.521 x 10"2 x y 

pH/V = 1.21 x 10-2 rad/cal 

Evaluation of Equation (4) gives for Case (1) Fins Shadowed: 

A. + i(j,! = ± 1.63 x 10"2 + i 1.15 x 10'5 
3 .1 

Case (2) Normal Free Flight: 

A. + i())' = +i 1.90 x 10"3; -i 1.84 x lO-3 

3    j 
The two types of motion are quite different.  In Case (1), fin 
shadowing produces both static and gyroscopic instability.  The yaw 
angle can be described as a two-armed motion, both having rotation 
in the same direction at the same velocity.  However, the magnitude 
of one of the arms is damped while that of the other grows without 
bound.  In Case (2), the normal free flight motion is bounded and 
consists of a two-armed motion having equal magnitudes (damping terms 
are neglected in Equation (4)) but rotating is opposite directions at 
slightly different rates. 

The significance of fin shadowing may be determined by computing 
the initial yawing motion for both cases. Murphy5 gives the following 
relations for the conditions as s = 0: 

C = k, e^lo + k0 e1<t)2o (5) o   lo       2o ^   J 

V0  = (^ + i^pk^e^lo + (A2 + i(j)pk2oe
ltt)2o (6) 

and by assuming that £•  =0, the following relations may be 

obtained 

k,  = k0 = K, [7) lo   2o ^   J 

(L  =<)),, + IT, (8) 
lo  2o ^ J 

K = |s' |/(4M - P2)1''
2
 ; (9) 

13 



yielding for Case (1) Fins Shadowed: 

S . Ke^o e1*!5 ^  -  ^ (,0) 

Case (2) Normal Free Flight: 

5 = Ke^o (e^l + ^l^ - 0^2 + ^ dD 

From Equations (10) and (11), the normalized initial yaw and 
yawing velocity are computed for both cases. Figure 7 and 8.  As 
anticipated for Case (1), the yaw and yawing velocity grow without 
bound while the motion for Case (2) is typical of a statically stable 
round.  The lower curves on each of the figures gives the ratio of 
the motions.  The sabot components can aerodynamically interact with 
the projectile over the first 11.0m of flight (Z/£ = 475).  In this 
range, the angle of yaw does not grow appreciably; however, the 
yawing velocity of the shadowed projectile is twice that which would 
have occurred if normal free flight aerodynamics were in effect. 
Obviously, the fins are not shadowed during the complete discard 
process. 

A better estimate of the shadowing distance can be made by 
considering the sabot discard analysis of Crimi and Siegelman . They 
postulate that the flow between the opening sabot segments will remain 
choked until the area between the segments becomes sufficiently large 
to pass the mass flow being taken in by the inlet scoops (i.e., 
analogous to a supersonic inlet, the sabot leading edges scoop in the 
air stream which is forced out either around the edges or through 
the area between the segments). For the free stream conditions of the 
present test: M =3.91, the conditions behind the inlet (normal) 
■T J    CO 

shock are 

M2 = 0.44, 

A/A*  =1.47 

The swallowing area ratio is developed by the time the sabot 
separates 20.2mm from the flight body.  Figure 5d shows this standoff, 
hr/l =  0.87, occurs by 2.5ms into the flight; therefore, Z/2, = 142. 

P. Crimi and D.  Siegelman,   "Analysis of Meahaniaal and Gas- 
dynamio Loadings during Sabot Discard from Gun Launched 
Projectiles,"   BEL Contractor Report 341, Ballistic Research 
Laboratory,  Aberdeen Proving Ground,  MB,  June 1977.    AD B020019L. 

14 



This value is presumed to be a more realistic estimate of the 
extent of possible fin shadowing. The resulting growth in either 
yaw or yawing velocity by Z/£ = 142 is seen to be rather small, 
Figure 7 and 8.  Thus, for a round which has rapid sabot discard, 
it may be concluded that the effect of fin shadowing by the discarding 
sabot components is not significant. 

C.  Mechanical Contact 

Direct contact between sabot components and the flight body during 
discard results in momentum exchange which alters the trajectories 
of both the projectile and the sabot segment.  The sabot component 
motion during and subsequent to impact has been discussed in the 
previous section.   In this section, the momentum exchange will be 
examined from the projectile's point of view. 

The yawing motion of the projectile is plotted in Figure 6.  The 
initial angular velocity of the round is fairly slow (indicated by 
the variation in angle between data points which are taken at roughly 
1.3ms intervals); however, after the impact occurs, the angular 
velocity changes in both magnitude and orientation.  From Figure 4, 
the impact between the projectile and sabot component number 4 is 
taking place on the upper right hand quadrant of the projectile rear 
surface.  The resulting moment would push the aft of the projectile 
downward and to the left.  In turn, the nose of the projectile moves 
upward and toward the right, i.e., direction of increasingly positive 
angle of attack, a, and increasingly negative angle of sideslip, 3, 
Figure 6.  By plotting these angles versus time of flight, the 
alteration in yawing velocities may be estimated: 

Act = 2.45 rad/s 

AB = -6.95 rad/s 

thus, 

|A||/|| | = 5.75. 

While the angles involved in the measurement are quite small and 
the accuracy of differencing data is always questionable, the order 
of magnitude of the momentum exchange due to impact is sufficiently 
large to indicate that it is a significant contributor to the 
transverse launch perturbation.  The secondary contribution of the 
impact, discard asymmetry, will be analyzed next. 

D.  Aerodynamic Interference 

The nature of the flow field associated with an asymmetric dis- 
card geometry of sabot components is illustrated in a spark shadow- 
graph taken from the archives of the BRL Aeroballistics Range, 

15 



Figure 9.  The fin stabilized model is seen flying with the two 
remaining segments of an originally four segment sabot. One of the 
sections is hung up on the fins while the other is being forced open 
by aerodynamic loads.  The flow field generated over the body is highly 
asymmetric.  The strong shock wave from the upper sabot segment 
impinges roughly 3 calibers up on the body, whereas, the shock wave 
from the lower sabot segment is seen to be intersecting the body very 
near the base.  The resulting aerodynamic pressure field induced by 
the shock impingements would be biased toward higher pressure levels 

on the upper side than on the lower. 

Similar asymmetries will be developed in the flow field 
surrounding the current projectile due to the irregular sabot discard 
geometry for the case under consideration, Figure 3 and 4.  The 
effect of the aerodynamic loads upon the projectile motion is seen in 
Figure 6.  Rather than following a yawing history compatible with 
the response to the mechanical impact (i.e., in undisturbed flight 
the projectile yaw would grow monotonically to a first maximum yaw 
19m after this impact2), the projectile reaches an extremum of yaw 
only two stations (3.5ml from the point of impact.  This shortening 
of the yawing period is caused by aerodynamic interference between 
the projectile and sabot component flow fields.  To demonstrate that 
the measured motion is compatible with aerodynamic loadings, the flow 
field model proposed in Reference 2 will be examined. 

Rather than treating the sabot segments as fully three dimension- 
al bodies, they are approximated as two dimensional wedges. Figure 10. 
The wedge half angles are set at the average sabot inclination 
measured in the X-ray photographs.  The tip of each wedge segment 
and oblique shock waves compatible with the free stream Mach number 
and wedge angle are projected to the projectile.  The shocks are 
reflected at the body either as weak shocks or normal shocks according 
to the local flow conditions.  Cross flow around the body is neglected 
as are the details of shock intersections.  The resulting moment 
computed using this procedure is shown in Figure 11.  Since the sabot 
geometry in the vertical plane was approximately symmetric, the 
computed moment acts only in the horizontal plane.  Taking as initial 
conditions the projectile state following the sabot impact, the equa- 
tion of motion may be integrated to determine the resulting yawing. 

Figure 12. 

The prediction overestimates the angular acceleration induced by 
aerodynamic loads.  As would be expected, considering the gross 
assumptions regarding the flow field.  However, the comparison 
between predicted and measured acceleration is sufficiently good to 
use the analysis to determine the impulse due to aerodynamic inter- 
ference.  Integrating the angular acceleration over the period of 

interaction provides: 

l^a.i/lU =23-4  ■ 
16 



This indicates that the aerodynamic interference contributes 
significantly to trajectory perturbation. 

V.  SUMMARY AND CONCLUSIONS 

A set of possible perturbation sources for the trajectory of a 
sabot, fin-stabilized projectile are identified.  Each source occurs 
after the round has separated from the gun tube. Of the four sources, 
aerodynamic interference and mechanical contact are shown to be quite 
significant, while muzzle blast and fin shadowing have a small effect 
on the trajectory.  A relative ranking in terms of change in pro- 
jectile yawing velocity is as follows: 

o |4|/|t 
1. Aerodynamic Interference       23.4 

2. Mechanical Contact 5.75 

3. Muzzle Blast 0.05 

4. Fin Shadowing 0.05 

The ranking of mechanical contact below aerodynamic interference 
does not reflect the fact that the geometric asymmetry in the sabot 
discard pattern is directly attributable to the contact of one of the 
sabot petals with the flight body.  The results presented here are 
an intensive study of a particular, specially selected sample round. 
In order to obtain more general correlations, many more firings should 
be examined. 

17 



MUZZLE   BLAST 

FINS   AEROOYNAMICALLY 
SHADOWED 

*Vi 

MECHANICAL     CONTACT 

AERODYNAMIC      INTERFERENCE 

DUE   TO   FLOW    ASYMMETRY 

Figure 1. Schematic of Launch Disturbances 

mm: 
DRIVING    TEETH 

\ ,LEAD   SURFACE 

CHAMFER 

OBTURATOR CENTERING 
BAND 

Figure 2a.  Test Projectile 



Six, orthogonal 
x-ray stations 

Five, smear 
cameras 

BRL Transonic 

Range, 25 spark 

shadowgraph sta. 

Figure  2b<,   Schematic of Test Set-Up 
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Figure 4. Rear View o£ Sabot Discard Geometry (as seen on a projection 
into a plane through the aft of the sabot segments and per- 
pendicular to the projectile axis of symmetry) 
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Figure 4,. Rear View of Sabot Discard Geometry (cont'd) 
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Figure 8. Comparison of Yawing Velocity of Aerodynamically Stable and 
Unstable Projectile vs Distance from Muzzle 
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Figure 9. Spark Shadowgraph showing Aerodynamic Asymmetry in Sabot 
Component Flow Relative to Projectile 

Figure 10. Schematic of Flow Field Model 
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Figure 12. Projectile Motion Predicted by Flow Interference Model 
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